A ROBUST UPLC METHOD FOR THE SIMULTANEOUS ESTIMATION OF SOFOSBUVIR AND VELPATASVIR IN COMBINED TABLET DOSAGE FORMS

¹B.V.V.S. Jagadeesh and ²J.V.L.N. Seshagiri Rao

¹Research Scholar and ²Professor

^{1, 2} Pharmaceutical Analysis and Quality Assurance Division, A.U. College of Pharmaceutical Sciences, Andhra University, Visakhapatnam-530003, Andhra Pradesh, India

ABSTRACT: A precise and accurate UPLC method has been developed and validated for the simultaneous quantitative analysis of sofosbuvir and velpatasvir. The separation of the drugs was achieved on an Acquity UPLC CSH C18 column (100 x 2.1 mm; 1.7 μ m) using a mobile phase consisting of a mixture of ammonium acetate buffer and acetonitrile in the ratio of 50:50 v/v. The flow rate was 0.3 mL/min and the column temperature was maintained at 30°C. The drugs were detected at 260 nm. The retention times obtained for sofosbuvir and velpatasvir were 1.197 and 1.723 min respectively. The method was validated for specificity, linearity, precision, accuracy and robustness. The specificity of the method was determined by checking the interference from the placebo and by stress studies on the drug substances. The quantitation was linear over the concentration ranges of 25–150 µg/mL for sofosbuvir and 6.25 – 37.5 µg/mL for velpatasvir. The accuracy of the method was between 98–102%. The method was found to be robust and suitable for the quantitative analysis of sofosbuvir and velpatasvir in tablet formulation. Forced degradation studies were conducted on the drugs and the resulting degradation products did not interfere with the quantitation of sofosbuvir and velpatasvir, demonstrating that the proposed method is specific for their estimation.

Keywords: Sofosbuvir, Velpatasvir, Simultaneous estimation, UPLC

1. INTRODUCTION: Sofosbuvir, a nucleotide prodrug¹⁻², is a direct acting antiviral drug used to treat chronic infectious liver disease caused by Hepatitis C Virus (HCV). HCV is a single-stranded RNA virus which is categorized into nine distinct genotypes. Sofosbuvir after getting metabolized into 2'-deoxy-2'- α -fluoro- β -C-methyluridine-5'-triphosphate becomes a defective substrate for non-structural protein 5B (NS5B), which is an RNA polymerase responsible for the transcription of Hepatitis C viral RNA and its replication. Sofosbuvir and other direct acting antiviral drugs are preferred for the treatment of Hepatitis C as they do not exhibit resistance unlike other antiviral agents that target viral enzyme protease.

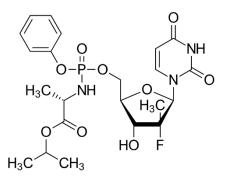
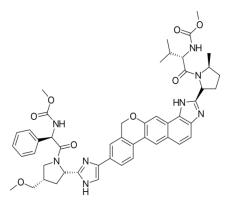



Fig. 1: Chemical structure of sofosbuvir

Velpatasvir is a complex organic hetero pentacyclic compound, an NS5A inhibitor⁴⁻⁵, which is used in combination therapy for treatment of chronic hepatitis C infection of all six major genotypes. Non-Structural Protein 5A(NS5A), a non-enzymatic viral protein, plays a key role in hepatitis C virus replication. Velpatasvir acts as a defective substrate for NS5A protein. Velpatasvir is indicated for the treatment of adult patients with chronic hepatitis C virus genotype 1, 2, 3, 4, 5, or 6 infections without cirrhosis or with compensated cirrhosis.

Fig. 2: Chemical structure of velpatasvir

2. CHEMICALS AND EQUIPMENT USED IN THE STUDY

2.1 Chemicals and solvents

Table 1: Chemicals and solvents

Chemical Name	Make	Grade
Water	Merck	HPLC
Acetonitrile	Merck	HPLC
Ammonium Acetate	Sigma-Aldrich	ACS Reagent
Conc.Hydrochloric acid	S.D. Fine Chemicals	AR (35.4 %)
Sodium hydroxide	S.D. Fine Chemicals	AR
Hydrogen peroxide	S.D. Fine Chemicals	AR (30 % w/v)

2.2 Equipment

Table 2: Equipment

Equipment	Make		
UPLC: Waters Acquity 2996 with Empower 2 software	Waters Corporation, Milford, USA		
Electronic balance	Mettler Toledo		
pH meter	Mettler Toledo		
Ultra sonicator	Lab India Instruments		
Thermal oven	Thermostat		
Micro pipettes	Brand and Eppendorf		

2.3 Reference standards and commercial tablets

Reference standard samples of sofosbuvir and velpatasvir were obtained from Mylan Laboratories Ltd, Hyderabad. The commercial formulation "MyHep All" Tablets (400 mg Sofosbuvir + 100 mg Velpatasvir; Mylan Laboratories Ltd.) was purchased from the local pharmacy.

3. METHOD DEVELOPMENT

3.1 Preparation of standard stock solutions (1.0 mg/mL): Independent stock solutions of the drugs were prepared by transferring 10 mg of sofosbuvir and 10 mg of velpatasvir into separate 10 mL volumetric flasks and adding 7 mL of the diluent. The flasks were sonicated for 5 min to dissolve the drugs completely. The final volumes were made up with the diluent to get 1.0 mg/mL concentration of the drugs.

3.2 Preparation of mixed working standard solution: From the above stock solutions, 0.25 mL of velpatasvir solution and 1.0 mL of sofosbuvir solution were pipetted into a 10 mL volumetric flask. The final volume was made up with the diluent to get concentrations of 25 μ g/mL of velpatasvir and 100 μ g/mL sofosbuvir.

3.3 Diluent: A mixture of water and acetonitrile in the ratio of 50:50 v/v was used as the diluent for the preparation and dilution of the drug solutions.

3.4 Optimized chromatographic conditions: Simultaneous chromatographic separation of sofosbuvir and velpatasvir was achieved on an Acquity UPLC CSH C18 column (100 x 2.1 mm; 1.7 μ m) by using a 50:50 v/v mixture of 10 mM ammonium acetate buffer and acetonitrile. The mobile phase was optimized in order to get better peak shapes and resolution between the peaks with accepted peak tailing and reproducibility of the response. The flow rate was set at 0.3 mL/min. The column temperature was maintained at 30°C. The injection volume was 3μ L. Run time was chosen as 3 min. The drugs in the eluates were monitored at 260nm. Under the above optimized chromatographic conditions, the retention times obtained for Sofosbuvir and Velpatasvir were 1.197 and 1.723 min respectively. The corresponding system suitability parameters are given in Table 3.

Parameter	Sofosbuvir	Velpatasvir	
Peak Area	2031521	807378	
Retention Time (min)	1.203	1.724	
USP Plate count	2734	4187	
USP Tailing	1.26	1.28	
% CV	0.5 0.5		
Resolution	5.2		

Table 3: System suitability parameters

4. VALIDATION OF THE PROPOSED METHOD

The optimized HPLC method was validated as per the ICH guidelines by determining the following parameters:

- 1. Specificity
- 2. Precision
- 3. Accuracy
- 4. Linearity
- 5. Robustness
- 6. Forced degradation studies

Specificity:The specificity of the method was established by analyzing the blank, placebo and standard solutions separately. No interfering peaks were observed at the retention times of sofosbuvir and velpatasvir (Fig. 5-7). Hence, the developed method was found to be specific for the simultaneous estimation of sofosbuvir and velpatasvir.

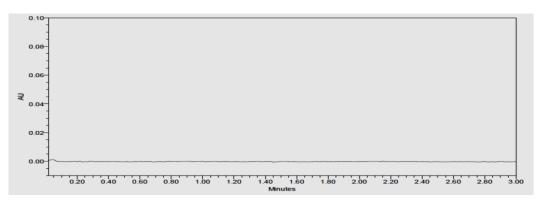
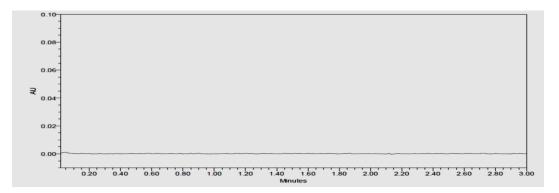
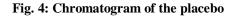




Fig. 3: Chromatogram of the blank

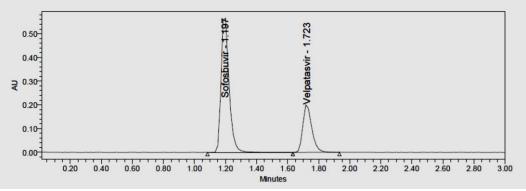


Fig. 5: Chromatogram of the mixed standard solution

Precision: The precision of the proposed UPLC method was evaluated by conducting intra-day and inter-day precision studies.

Intra-day precision (Repeatability): The precision of the method was assessed by performing six independent assays of the test sample, calculating the % RSD of the peak area values. The relevant results are tabulated in Table 4.

		rasion more any p		· · · · · · · · · · · · · · · · · · ·			
S No		Sofosbuvir		Velpatasvir			
S. No.	Peak area	USP Plate count	USP Tailing	Peak area	USP Plate count	USP Tailing	
1	2030376	2747	1.26	812045	3833	1.29	
2	2057728	2727	1.26	821638	3975	1.22	
3	2039601	2740	1.26	817612	4078	1.21	
4	2069867	2754	1.25	805804	4155	1.21	
5	2036334	2786	1.26	807374	4237	1.21	
6	2049314	2687	1.26	810620	4294	1.21	
Average (n=6)	2047203			812516			
SD	14751	-		6074			
% RSD	0.7			0.7	-		

Table4: Intra-day precision of sofosbuvir and velpatasvir

Intermediate Precision (Inter-day precision): The inter-day precision of the method was checked by performing the above procedure on two consecutive days under the same experimental conditions, taking the overall average and calculating the % RSD. The corresponding results are shown in Table 5.

	Sof	osbuvir		Velpatasvir			
Day	Average Peak Area (n=6)	USP Plate count	USP Tailing	Average Peak Area (n=6)	USP Plate count	USP Tailing	
Day 1	2030583	2735	1.25	804011	4123	1.22	
Day 2	2029513	2740	1.25	803331	4189	1.21	
Overall Average	2030048			803671			
SD	757		-	481		-	
% RSD	0.0			0.1			

Table5: Inter-day precision of sofosbuvir and velpatasvir

Accuracy: The accuracy of the proposed UPLC method was evaluated by determining the recoveries of sofosbuvir and velpatasvir after adding pre-determined amounts to the mixed standard solution. Solutions of sofosbuvir and velpatasvir at 50, 100 and 150% concentration levels were prepared, analyzed and the corresponding chromatograms obtained. The mean percent recoveries were calculated from the peak areas of the drugs. The corresponding results are shown in Table 6.

	Table 0. Accuracy data of solosbuvit and verpatasvit									
		Sofosbuvi	r		Velpatasvir					
Conc. Level	Amount added (µg/mL)	Difference amount recovered (µg/mL)	Mean % Recovery	% RSD	Amount added (µg/mL)	Difference amount recovered (µg/mL)	Mean % Recovery	% RSD		
_		50.540				12.510				
50%	50% 50.000	49.753	100.0	0.97	12.500	12.490	99.9	0.22		
		49.660				12.456				
		101.609				24.871				
100%	100.00	100.297	100.6	0.85	25.000	24.952	99.5	0.27		
		99.995				24.819				
		152.761				37.7684				
150%	150.000	151.593	101.5	0.40	37.5000	37.5357	100.3	0.36		
		152.495				37.5289				

Table 6: Accuracy data of sofosbu	uvir and velpatasvir
-----------------------------------	----------------------

Linearity: Linearity of the proposed analytical method was assessed by injecting three replicates of the mixed working standard solutions at six different concentration levels in the ranges of 25 to 150 μ g/mL for sofosbuvir and 6.25 to 37.5 μ g/mL for velpatasvir. The corresponding responses were found to be linear. The results are summarized in Tables 7.

The linear regression equation for sofosbuvir was found to be y = 20174x + 15873 (r²=.0.9997) (Fig. 6). The linear regression equation for velpatasvir was found to be y = 31833x + 14553 (r²=0.9998) (Fig. 7).

	Sofosbu	uvir			Velpata	svir	
Conc. (µg/mL)	Peak Area	Average Peak Area (n=3)	% RSD	Conc. (µg/mL)	Peak Area	Average Peak Area (n=3)	% RSD
	510242				214179		
25.00	511790	511537	0.2	6.25	212791	214158	0.6
	512579				215503		
	1024086				407885		
50.00	1027340	1024477	0.3	12.50	409419	406313	1.0
	1022005				401635		
	1527490				612861		
75.00	1527184	1526576 0.1	1526576 0.1	18.75	612170	613544	0.3
	1525055				615601		
	2045969				816028		
100.00	2057188	2050606	0.3	25.00	812457	814921	0.3
	2048662				816278		
	2551519				1015543		
125.00	2555769	2554118	0.1	31.25	1015277	1015253	0.0
	2555067				1014938		
	3018695				1202970		
150.00	3019964	3019457	0.0	37.50	1200716	1201214	0.1
	3019711				1199956		

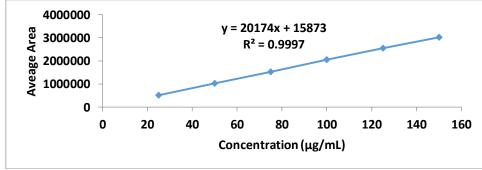


Fig. 6: Linearity curve for sofosbuvir

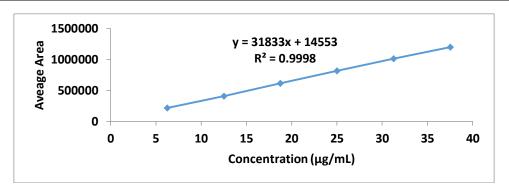


Fig. 7: Linearity curve for velpatasvir

Robustness: Small deliberate changeswere made in the **method** conditions like flow rate, mobile phase composition and column temperature and the corresponding chromatograms were obtained. No appreciable differences were observed in the system suitability results, which were within the acceptable limits per the ICH guidelines. The results are shown in Tables 8, 9 and 10.

Table8: Robustness data of change in flow rate

Flow rate (mL/min)		Drug	Retention	Asymmetry	Plate	Resolution	
Actual	Change	time (min)		Asymmetry	count	Resolution	
	0.2	Sofosbuvir	1.331	1.3	2542	5.1	
0.3	0.3	Velpatasvir	1.918	1.3	4258	5.1	
	0.4	Sofosbuvir	1.093	1.3	2730	5.1	
0.4	Velpatasvir	1.574	1.3	4156	5.1		

Tables: Robustness data of change in mobile phase composition									
Mobile Phase (Buffer-ACN v/v)		Drug	Retention time (min)	Asymmetry	Plate count	Resolution			
Actual	Change		time (iiiii)		count				
55.4	55:45 v/v	Sofosbuvir	1.201	1.2	2845	5.2			
60:40	55:45 V/V	Velpatasvir	1.705	1.2	4563	5.2			
00:40	(5.25 mlm	Sofosbuvir	1.203	1.3	2845	5.5			
	65:35 v/v	Velpatasvir	1.755	1.3	4474	5.5			

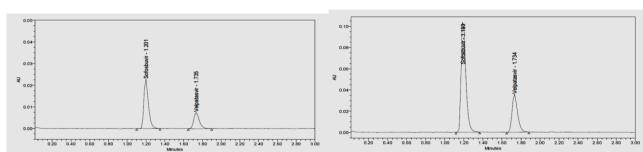
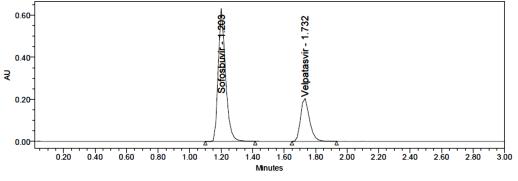

Table9: Robustness data of change in mobile phase composition

Table10: Robustness data of change in column temperature

Column temperature (°C)		Dana	Retention	Acummotav	Plate count	Resolution
Actual	Change	Drug	time (min)	Asymmetry	r late count	Resolution
30	28	Sofosbuvir	1.206	1.3	2952	5.4
		Velpatasvir	1.731	1.3	4601	
		Sofosbuvir	1.201	1.2	2926	5 1
	32	Velpatasvir	1.725	1.3	4449	5.4

Limit of Detection and Limit of Quantitation: The LOD values were found to be 0.133 μ g/mL for sofosbuvir and 0.010 μ g/mL for velpatasvir. The LOQ values were found to be 0.404 μ g/mL for sofosbuvir and 0.030 μ g/mL for velpatasvir. The relevant LOD and LOQ data are given in Table 11 and the corresponding chromatograms in Fig. 8.


Table 11: LOD and LOQ results						
Drug	LOD	LOQ				
	$(\mu g/mL)$	$(\mu g/mL)$				
Sofosbuvir	0.133	0.404				
Velpatasvir	0.010	0.030				

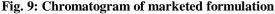


Fig. 8: LOD & LOQ Chromatograms

5. SIMULTANEOUS ESTIMATION OF SOFOSBUVIR AND VELPATASVIR IN TABLET DOSAGE FORM: Twenty tablets were weighed and finely powdered. An amount of powder equivalent to the weight of one tablet was accurately weighed and transferred into a 50 mL volumetric flask. 30 mL of the diluent was added to the flask and sonicated for 30 min. The contents were diluted to volume with the diluent and filtered through a 0.45 µ membrane filter. 125 µL of the filtrate was pipetted into a 10 mL volumetric flask and the volume was made up with the diluent. The resultant solution was chromatographed and analyzed. The average assay value obtained for sofosbuvir was 99.85 % and that for velpatasvir was 99.48%. The results are given in Table 12 and the corresponding chromatogram in Fig. 9.

	Sofosbuvir			Velpatasvir		
S. No.	Peak Area from working standard	Peak Area from formulation	% Assay	Peak Area from working standard	Peak Area from formulation	% Assay
1	2017921	2034752	100.06	804159	802550	99.30
2	2047634	2025010	99.58	805682	804792	99.58
3	2027058	2027280	99.69	805387	805936	99.72
4	2032436	2026442	99.65	814160	805526	99.67
5	2038418	2040317	100.33	810972	804033	99.49
6	2025662	2029696	99.81	803912	801227	99.14
Average (n=6)	2031522	2030583	99.85	807379	804011	99.48
SD	10461.748	5865.733	0.288	4198.285	1816.396	0.225
% RSD	0.5	0.3	0.3	0.5	0.2	0.2

6. FORCED DEGRADATION STUDIES ON THE DRUG SUBSTANCES: The forced degradation studies were conducted on the mixed working standard solution of sofosbuvir and velpatasvir. The drugs were subjected to degradation with acidic, alkaline, peroxide, dry heat, photolytic and neutral stress conditions. The results of the study are given in Table 13.

Table 13: Forced degradation data								
Nature of degradation		Sofosbuvir		Velpatasvir				
	Stress conditions	% Assay	% Degradation	% Assay	% Degradation			
Acid	2N HCl at 60 °C for 30 min	96.72	3.3	96.57	3.4			
Base	2N NaoH at 60 °C for 30 min	96.24	3.8	94.59	5.4			
Peroxide	Heated with 20 % H ₂ O ₂ at 60 °C for 30 min	96.43	3.6	97.54	2.5			
Dry heat	Heated in an oven at 105 °C for 6 h	95.85	4.1	96.03	4.0			
Photolytic	Exposed to UV light at 200 Watts hours/m2 for 7 days	98.84	1.2	98.14	1.9			
Neutral	Heated with water at 60 °C for 6 h	99.62	0.4	99.77	0.2			

7 CONCLUSION: The UPLC method developed for the simultaneous estimation of sofosbuvir and velpatasvir was accurate and reproducible and can be employed for estimation of the drugs in their combined formulations. The chromatographic conditions were optimized prior to validation studies in terms of stationary phase, mobile phase composition, flow rate and column oven temperature, which gave good system suitability. The developed method was validated as per ICH Q2A (R1) guidelines. The developed method was found to be specific because there was no interference from the placebo, matrix, and degradation products at the retention times of the analytes. Hence, the developed method can be used for routine quality control analysis of sofosbuvir and velpatasvir in their combined tablet dosage forms.

8. REFERENCES

- Santosh S and Sachin L 2019. Analytical Method Development and Optimization of Sofosbuvir Drug A QbD Approach. International Journal of Pharmaceutical Sciences and Research, 10(1): 108-116.
- [2] Sherif A 2016. Simple chromatographic and spectrophotometric determination of Sofosbuvir in pure and tablet forms. European Journal of Chemistry, 7(3): 375-379.
- [3] Vanessa De P, Maria Cristina M, Matteo R, Silvia G, Vittoria V, Maria C and Matteo P 2019. Efficacy, Safety, and Predictors of Directacting antivirals in Hepatitis C Virus Patients with Heterogeneous Liver Diseases. New Microbiologica, 42(4): 189-196.
- [4] Kaushlendra S, Sachin B and Ramesh Prasad 2019. HPLC Method for Estimation of Drug Release of Sofosbuvir in Pharmaceutical Formulation. International Journal of Pharmaceutical Sciences and Research, 10(1): 367-372.
- [5] M. Nebsen and Eman S 2016. Stability-Indicating Method and LC–MS-MS Characterization of Forced Degradation Products of Sofosbuvir. Journal of Chromatographic Science, 54(9): 1631–1640.
- [6] Anjaneyulu Reddy B, Irshad A, Nazia K and Radha Krishnan and P 2019. An Innovative Method Development and Forced Degradation Studies for Simultaneous Estimation of Sofobuvir and Ledipasvir by RP-HPLC. International Journal of Pharmacy and Pharmaceutical Sciences, 11(2): 34-41.
- [7] Sandya Rani J and Devanna N 2018. Development and Validation of RP-HPLC Method for the Simultaneous Estimation of Sofosbuvir, Velpatasvir and Voxilaprevir in Bulk and Tablet Dosage Forms. Rasayan J. Chem., 11(2): 452-459.
- [8] Swetha V, Sowjanya P, Vijaya Kumar G and Haneef M 2018. Method Development and Validation of RP-HPLC Method and Stress Degradation Study of Determination of Sofosbuvir and Velpatasvir in Bulk and Pharmaceutical Formulation. Indian Journal of Pharmaceutical Science and Research, 8(1): 6-11.
- [9] Vanaja B, Vageesh N, Kistayya C and Urukundu V 2018. RP-HPLC Method Development and Validation for Simultaneous Estimation of Sofosbuvir and Velpatasvir in Pure and Pharmaceutical Dosage Form. Innovate International Journal of Medical and Pharmaceutical Sciences, 3(1): 45-48.
- [10] Harshalatha P, Chandrasekhar K and Chandrasekhar M 2018. A novel stability indicating method development and validation for the simultaneous estimation of Velpatasvir and Sofosbuvir in bulk and its pharmaceutical formulations. International Journal of Research in Pharmaceutical Sciences,9(2): 566-571.
- [11] Kalpana N, Shanmukha Kumar J and Ramachandran D 2018. Analytical Method Development and Validation for the Simultaneous Estimation of Sofosbuvir and Velpatasvir Drug Product by Reverse Phase High Performance Liquid Chromatography Method. Asian Journal of Pharmaceutical and Clinical Research, 11(2): 164-168.
- [12] Chinababu D 2019. A Novel Stress Indicating RP-HPLC Method Development and Validation for the Simultaneous Estimation of Velpatasvir and Sofosbuvir in Bulk and its Tablet Dosage Form. Journal of Pharmaceutical Research International, 26(2): 1-10.
- [13] Jaimin P and Ankit B 2018. Stability Indicating RP-HPLC Method Development and Validation for Simultaneous Estimation of Sofosbuvir and Velpatasvir in Tablet. World Journal of Pharmacy and Pharmaceutical Sciences, 7(5): 813-828.
- [14] Lakshmana Rao A and Pallavi A 2019. Method Development and Validation of Stability Indicating RP-HPLC Method for Simultaneous Estimation of Sofosbuvir and Velpatasvir in Tablet Dosage Form. Pharmaceutical Sciences & Analytical Research Journal, 2(1): 1-8.